

<u>Time</u> : 3 hours

Examiner : SLT

Moderator(s) : PHL

: June 2019

Date

INSTRUCTIONS

- Illegible work, in the opinion of the marker, will earn zero marks.
 Number your answers clearly and accurately, exactly as they appear on the question paper.
- 3. <u>NB</u> Start each new Question at the top of a page.
 - Leave <u>2 lines</u> open between each of your answers.
- 4. <u>NB</u>
 Fill in the details requested on the front of this Question Paper.
 Do <u>not</u> staple your Question Paper and Answers together. They will be handed in separately.
- 5. Detach the Answer Sheet for Question 7 and staple it, in order, with your other answers.
- 6. Employ relevant formulae and show all working out. Answers alone may not be awarded full marks.
- 7. (Non-programmable and non-graphical) Calculators may be used, unless their usage is specifically prohibited.
- 8. Round off answers to 2 decimal places, where necessary, unless instructed otherwise.
- 9. If (Euclidean) Geometric statements are made, reasons must be stated appropriately.

1.1. Solve for :

1.1.1.
$$3x^2 = 5x$$
 (3)

1.1.2.
$$2x - \frac{3}{x} = 7$$
 (4)

1.1.3.
$$3x^{-\frac{2}{5}} = 0.81$$
 (3)

1.1.4.
$$x(x-5) > 6$$
 (4)

1.2. Solve for x and y:

$$1 = 2y - x$$
 and $x^2 - xy + y^2 = 7$ (6)

1.3. CALCULATORS MAY NOT BE USED IN THIS QUESTION

1.3.1. Simplify fully:
$$\frac{3^{2020}}{3^{2014} - 3^{2018}}$$
 (2)

1.3.2. Solve for
$$x : 9^{x+1} + 26.3^x = 3$$
 (5)

1.3.3. If
$$3^{\sqrt{y}} = 8$$
, determine the value of $\sqrt[3]{3}^{\sqrt{y}}$ (3)

[30]

2.1. How many terms are there in the following series :

$$4 + 1 - 2 - 5 \quad \dots \quad = -10\ 875 \tag{5}$$

2.2. If:
$$\sum_{k=1}^{5} (x-3k) = \sum_{k=1}^{8} (x-3k)$$
, calculate the value of x. (3)

2.3. For a certain quadratic number pattern, the following details are known

- the first three first differences are : -23; -39; -55
- the sixtieth term is -28727

Determine an expression for T_n , the general term of the sequence. (5)

[13]

QUESTION 3

3.1. Prove that the sum of the first *n*-terms of a geometric series is given by

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
 $(r \neq 1)$ (5)

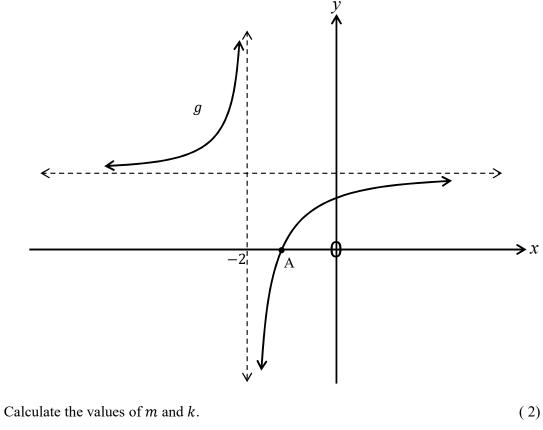
3.2. Evaluate :
$$\sum_{k=5}^{22} \frac{3}{4} \left(-\frac{2}{3}\right)^{8-k}$$
 (5)

3.3. Given below are the first three terms of an infinite geometric series $(5x + 2) + (2 - 4x) + (x + 7) + \cdots$

- 3.3.1. Calculate the value(s) of x. (4)
- 3.3.2. Now, if the given series converges, calculate the sum to infinity, S_{∞} . (4)
- 3.4. For a certain geometric series, it is known that
 - the sum of the first three terms is 17
 - the sum of the sixth, seventh and eighth terms is 544
 - Calculate the constant ratio, r, of the series. (4)

[22]

QUESTION 4

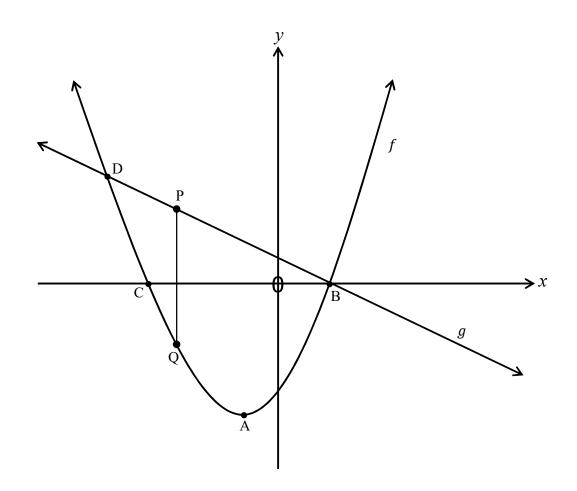

4. Determine an expression for the sum of the first *n*-terms, S_n , of the following series

$$\frac{1}{4} + \frac{11}{20} + \frac{7}{10} + \frac{11}{14} + \frac{47}{56} + \dots$$
 [2]

5.1. Given :
$$f(x) = -\frac{3}{x+4}$$

5.1.1. Write down the domain of f . (1)
5.1.2. State the equations of the asymptotes of f . (2)
5.1.3. Sketch a rough graph of f , showing all relevant details
on the diagram. (3)
5.1.4. If f is reflected in its vertical asymptote to become g , write down the
equation of g in y -form. (1)
5.1.5. Write down the equation of the axis of symmetry of h , if
 $h(x) = f(x)$ ($x > -4$) (2)
5.2. Calculate the coordinates of the reflection of A(-7; 9) in the line $y = -x + 5$. (2)
5.3. Write $y = \frac{3-4x}{x+5}$ in the form $y = \frac{k}{x-p} + q$ (2)

5.4. The asymptotes of $g(x) = \frac{3x - m}{x + k}$ are indicated by the short-dashed lines.


The vertical asymptote crosses the x-axis at -2 and $A\left(-\frac{2}{3}; 0\right)$.

[15]

- 6.1. For f, the following details are known
 - Axis of symmetry : x = -2
 - Range : $y \in [-18; \infty)$
 - A is the turning point of f

The equation of g is g(x) = -2x + 2. PQ is a vertical line whose length is $24\frac{1}{2}$ units.

6.1.1. Determine the coordinates of

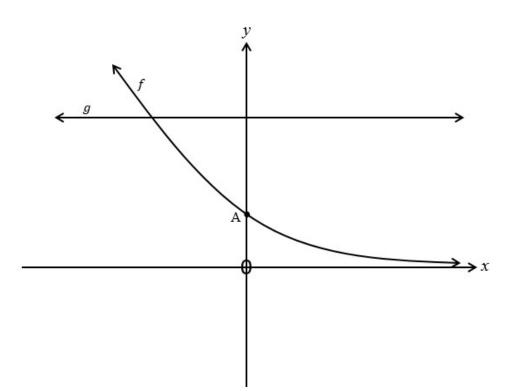
(a) A (1)

6.1.2. Now, show that the equation of f will be $y = 2x^2 + 8x - 10$ (4)

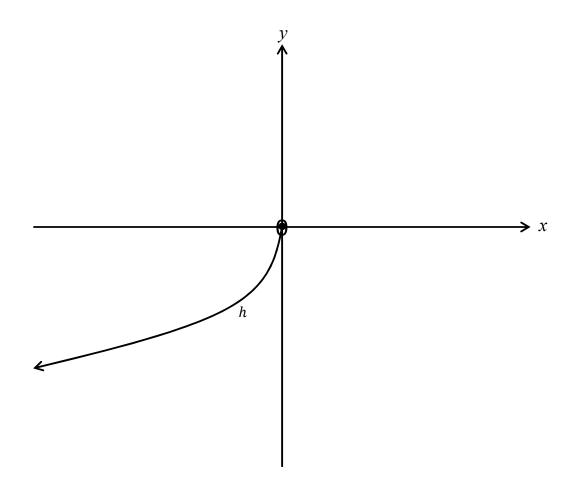
6.1.3. Calculate the coordinates of

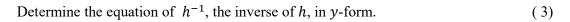
- (a) D (5)
- (b) P (5)
- 6.1.4. Use the graphs to solve for x:

(a)
$$x.f(x) > 0$$
 (2)


(b)
$$\frac{f(x)}{g(x)} \le 0$$
 (2)

6.2. Sketch a rough graph of $y = ax^2 + bx + c$ if a < 0, b > 0, c < 0and $b^2 - 4ac = 0$. (4)


[25]

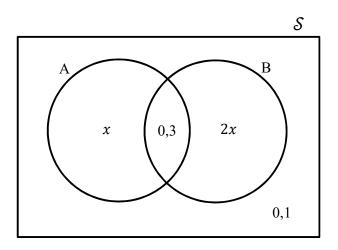

USE THE ANSWER SHEET PROVIDED

7.1 In the diagram below,
$$f(x) = \left(\frac{1}{3}\right)^x$$
 and $g(x) = 3$.

7.1.1.	Write down the coordinates of A.	(1)
7.1.2	On the set of axes, given in the Answer Sheet, sketch the graph of f^{-1} , the inverse of f .	(2)
7.1.3.	Solve for : $\log_{\frac{1}{3}} x = 3$	(1)
7.1.4.	Hence, write down the solution to : $\log_{\frac{1}{3}} x \ge 3$.	(2)

8.1.	How many years will it take for a vehicle to depreciate to half of its original value, if the rate of depreciation is 12 % p.a. calculated on the reducing balance method.	(3)		
8.2.	Convert an effective annual interest rate of 15 % p.a. to a nominal interest rate, as a percentage, p.a. compounded monthly.	(4)		
8.3.	On the 1 st January 2019, a pupil invests R 1 500 in a new savings account that earns interest of 7 % p.a. compounded monthly. What will be the balance in the account on the 31 st December 2030 ?	(4)		
		[11]		
QUESTION 9				

- 9. Given : $f(x) = 30x^3 49x^2 + 9x + 4$
- 9.1. Use the factor theorem to show that (2x 1) is a factor of f. (2)
- 9.2. Hence, factorise *f* fully.


[5]

(3)

- 10.1. Two events, A and B, are mutually exclusive. It is also known that
 - $P((A \cup B)') = 0.3$
 - P(A) = 0,2

Calculate P(B).

10.2. Given below is a Venn Diagram for two Events, A and B :

10.2.1. Calculate the value of x, showing that it will be 0,2. (1)

10.2.2. Are Events A and B independent? Justify your answer appropriately. (5)

10.3. In a factory, three machines viz. A, B and C, are used to manufacture glass bottles. These machines produce 20 %, 30 % and 50 % of the total production, respectively. Of the glass bottles produced by machines A, B and C, 1 %, 2 % and 6 %, respectively, are defective.

10.3.1.	Represent the given information in the form of a tree diagram. Show all relevant details on the diagram.	(4)
10.3.2.	A glass bottle is selected, at random, from the total production. What is the probability that the glass bottle	
	(a) was produced by machine B and is not defective ?	(2)
	(b) is defective ?	(3)
		[18]

TOTAL 150

(3)